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Abstract. We solve for the s p e d ”  of the deformed biquadratic spin-l chain by a 
generalization OF the coordinate Bethe ansatz The model is invariant under the quantum 
group U,sl(Z) an6 depending on the deformation parameter q,  it’s Hamiltonian may not be 
Hermitian. We consider several boundary conditions and find in particular that for periodic ones, 
the complete specmm of the spin-4 XXZ model is always contained in the spec!” of the 
biquadratic model. For free boundary conditions the spectrum is identicd to the XXZ model 
s p e c I “  only the multiplicities are, of course, different. Bethe states are highest-weight states 
of the quantum group, except possibly for zerwnergy states. 

1. Introduction 

A model possessing an infinite number of conservation laws is usually referred to as exactly 
solvnble, even if there is no way in sight to actually obtain at least a partial solution. Such 
exactly solvable models can be generated in two dimensions by solving Yang-Baxter, star- 
triangle or similar cubic equations [I], which guarantee the existence of an infinite number 
of commuting conserved charges. 

One of the favourite methods to apply in such a case is the Bethe ansafz (BA). The 
more sophisticated form is the algebraic BA 121. Here one uses the miraculous fact that the 
Yang-Baxter equations can be recast in the form of commutation relations for creation and 
destruction operators with respect to a convenient reference state. It is not known when 
a particular solution of the Yang-Baxter equations can be used as a starting point for the 
algebraic BA. 

The simplest version is the coordinate BA [3] and we will use a generalization of this 
framework to solve the deformed biquadratic spin-1 Hamiltonian subjected to several types 
of boundary conditions. This Hamiltonian has been obtained as a solution of the Yang- 
Baxter equations for spin-I with U(1) invariance [4]. Yet the Yang-Baxter equations do 
not in this case provide one with commutation relations, so that the algebraic version of the 
BA is not readily available. 

This model has been studied in its undeformed version by Parkinson [5], who obtained 
the ground state and several low-energy excitations. Barber and Batchelor 161 have shown 
that the Hamiltonian satisfies the Tcmperley-Lieb algebra [7]. Kliimper has obtained the 
energy gap using inversion relations [8].  

8 E-mail: ROLAND@FQSC.SC.USP.BR 
11 Supponed in part by CNPq-BRAZIL. 
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5410 R M b e r l e  and A Lima-Santos 

The deformed model was introduced by Batchelor et al [9] who considered spin-l 
Hamiltonians invariant under the quantum group Uqsl(2). It is one of the cases which 
cannot be obtained by a fusion procedure from integrable spin-f Hamiltonians [IO]. 

In terms of spin-I variables Sk = (Si, Sl, Si ) ,  the deformed biquadratic spin-l 
Hamiltonian is given by 

N 
H ( q )  = x e k  (1.1) 

k=1 

with 

ex (sk * &+I)' - 1 - sinhZA[S& - (S$S$+l)'] 
+t sinhh [(StSitl + SiSi+,)(SicI - S;) + HC] 

+2sinh2(A/2) [(StSitl + S ~ S ~ t l ) S ~ S f t l  t HC] 
+f sinh(2A) [S~S;,,(S;,, - Si ) ]  (1.2) 

where &.&+I  denotes the standard rotationally invariant scalar product and I is a coupling 
constant. In what follows we will also use the deformation parameters q. ,3 and A: p = e2*, 
q + q-' = 1 + p + p- '  = -2A. At A = 0. ek reduces to the isotropic spin-1 biquadratic 
chain [6, 51. 

er can be obtained [4] as a solution of the spin-I representation of the Hecke algebra 
with only the U(1) symmetry (generated by S' = xi Sf) .  In fact, ek obeys the more 
restrictive Temperley-Lieb algebra: 

(1.3) 

and commutes with the quantum group Uqsl(2): the Hamiltonian density is the Casimu 
operator (Si - Sk+r)', where S is the spin-I representation of the Uqsl(2) algebra for one 
site. It actually is the projector on total two-site spin-0. 

The paper is organized as follows. In section 2, we develop a Bethe ansatz for periodic 
boundary conditions-which may include a phase-for the simplest cases. In section 3, 
we discuss the most interesting sectors with up to two pseudopardcles. The general case, 
including the ground-state of the anti-ferromagnetic chain, is treated in section 4. Section 5, 
contains the solution for free boundary conditions, where we verify that the spectrum is 
identical to one of the XXZ model. We also discuss the status of the Bethe states as 
quantum-group highest-weight states. Finally the conclusions are reserved for section 6. 

2. The coordinate Bethe ansatz 

In order to diagonalize H. we proceed as in typical BA applications. 
In the basis, where S i  is diagonal with eigenvectors I+,k), 1O.k) .  I-, k) and 

eigenvalues +I ,  0 and -1, ek is the 9 x 9 matrix acting in [a, k) @ 16, k t 1) , a, b = 

e: = (q + q-')ek ekektlek = ek 
[ e t ,  e ; ]  = 0 Ik - ZI 2 2 

+, 0, -: 

ek= 0 U 0 (2.1) (1 : :I ~~~ 

where 0 is the 3 x 3 zero matrix and U is the 3 x 3 matrix defined by 
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Since this Hamiltonian commutes with the total spin operator S‘ = E, S,$ the eigenvalues 
of the operator r = N - S2 are good quantum numbers. Due to this U(1) invariance, there 
always exists a reference state IQ) satisfying H ( q )  IQ) = EO I Q ) ,  with EO = 0. We take IQ) 
to be (a) = n, I+, k ) .  This is the only eigenstate in the sector r = 0. All other energies 
will be measured relative to this state. In every sector r there are eigenstates degenerate 
with IQ). They contain r impurities. We call impurity a state 10, k )  flanked by at least 
two states I+, k -+ 1). Since H ( q )  is a sum of projectors on spin zero, these states are 
annihilated by H ( q ) .  In particular, they do not move under the action of H ( q ) .  which is 
the reason for their name. 

For example, in the sector r = 1, the eigenspace is spanned by the states Ixro]) = 
(+ + + 2 + + . . .), x = 1, . . . , N ,  with a convenient superposition yielding momentum 
eigenstates for periodic boundary conditions. 

2.1. States containing one pseudoparticle 

Starting with r = 2, we encounter states where the 10, k)’s occur in neighbouring pairs. They 
do move under the action of H ( q )  and mix with states containing one I-, k). Eigenstates 
are superpositions of 1x1-I) = (+ + + ; + + . . .) and IXIW) = (+ + + 00+ + . . .). i.e. 

12; . . .) = E [ a ( x )  1x14 + b(x)  Ixrw)l (2.3) 
z 

where the ellipses stand for parameters on which the eigenvector is to depend. 
We will treat periodic boundary conditions maintaining translational invariance in 

the following sections. They demand SN+~ = St, implying a(x + N) = a(x)  and 
b(x + N )  = b(x). 

When H ( q )  now acts on 12; ... ). it sees the reference configuration, except in the 
vicinity of x, and we obtain the eigenvalue equations 

( E  - @ - @ - I )  a(x)  = a(x + 1) + a(x - 1) + ,B’/’b(x - 1) + @-‘/’b(x) 
( E  - 1) b ( x )  = @-‘ / ’a (x )  + @1/2u(x + 1). 

The translational invariance implies: a ( x )  = a y  and b(x) = be”. Substituting this into 
equation (2.4) we get two eigenstates whose energies are 

(2.4) 

E 2 5 0  

where r(() = @-’/’ + 6 @I/’.  Here ( = e’e, 0 being the momentum determined from the 
periodic condition selected: 0 = 2 d / N ,  with integer 1 .  

We describe this situation by saying that we have two types of pseudoparticles with 
energies E1 and Ez. Whereas the pseudoparticle 12; e), is degenerate with la), i.e. 
propagates with energy E2 = 0, the pseudoparticle 12; e) ’ ,  propagates with energy 

El = - ~ A + ~ c o s ~ .  (2.7) 
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3. The sectors P larger than 2 

The situation becomes non-trivial for T > 2, where we can have pseudoparticles interacting 
with isolated impurities and with pseudoparticles. The main result of this paper is to show 
that H ( q )  can be diagonalized in a convenient basis and constructed from products of 
single pseudoparticle eigenfunctions. From this statement, it immediately follows that the 
eigenvalues of H ( q )  will be a sum of single pseudoparticle energies, 

R Koberle and A Limo-Santos 

where E .  depends on which type of the pseudoparticle we use: E" = 1 for E = El and 
E .  = 0 for E = E2 = 0. f,, = e'" and 6, are rapidities still undetermined at this stage. 

3.1. One pseudoparticle und impurities 

In the sector r = 3, besides trivial non-interacting eigenstates (impurities), we have four 
coupled propagating types of states containing a pseudoparticle and an impurity. We 
parametrize them as 
(3; . . .) = (UI(XI, ~ 2 )  Ixi[ol. ~ z I - 1 )  + b i ( x i ,  Xz) IXi[o]. x ~ [ W  

XI -=a 
+UZ(XI, XZ) IXII-I, XZIOI) + ~ Z ( X I  9 XZ) IXIIWI, XZIOI)~. (3.2) 

For even N ,  the parity of the impurity position is conserved, being either even or odd. This 
is actually a consequence of [ H ( q ) ,  C(-l)k(S$] = 0 for even N .  

Since the eigenstates in this sector consist of a pseudoparticle interacting with an isolated 
impurity, the eigenvalues for such states are parametrized as in equation (2.7). 

Periodic boundary conditions require that 

(3.3) 
ai (XI, XZ) ~ Z ( X Z ,  N + XI) 
az(~i ,  XZ) = a i h  N + XI) 

a i ( x l , ~ z )  =t"'ai(n)  b,(xI,Xz) =t" 'bi(n)  i = 1,2 (3.4) 

bi (xi, XZ) = bz(Xz, N + xi) 
bz(xi, XZ) = b i ( ~ z ,  N + xi) 

and translational invariance specifies 

where n = x z  - X I  and 5 = ( I ~ z .  Periodic boundary conditions imply tN = 1. 
Let us take the block 61 = 1. We try to build these eigenstates out of translationally 

invariant products of one-pseudoparticle excitation with parameter 51 and oneimpurity with 
parameter 8 and weight functions Di(x1, X Z ) .  Using equations (2.5). (2.6), we may write 

Comparing this with equation (3.2) and using equations (3.4). we have the 
parametrization 

(3.6) 

H ( 4 )  may now be applied to 13; f l , t z )  to obtain a set of coupled equations for ai(xj,  X Z )  

and bi(xl ,xz) ,  i = 1,2. Following [5], we split the equations into fur equations, when 
excitations do not meet and near equations, ontaining terms when they are neighbours. 

a i ( ~ ~ , ~ ~ ) = t ' ~ D i ( n ) r ( t ; ' )  b i (x j ,xZ)= tx1Di (n)  i = 1,2 
Dl(n)  = t " D z ( N  - n). 
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The far equations are 
( E  - B - B - ' ) ~ I ( X I . X ~ )  = ai(xl.x2 - 1) +ai(xl. x2 + 1) 

+ Bfh(xi ,  xz - 1) + B-ibi(xi, xz) XI + 2 < xz < N + X I  - 2 (3.7) 

( E  - I)bl(xl,xd = B ~ ~ I ( X I , X Z  + 1) + B - ~ ( X I . X Z )  
and a similar set of eigenvalue equations coupling a2 and bz. 

E # 0, 1 (and similarly for a*): 

As usual, we now choose to parametrize Di by plane waves and try as a solution 

Substituting this in equation (3.8), we obtain for the energy 

XI + 2 < xz < N + x l  - 3 

Eliminating bl (62) results in the following eigenvalue equations for a,, provided 

(3.8) 

(3.9) 

(E- 1 - B  -~- ' )a l (n)  =a t (n  - 1)+al (n+ 1) 3 < n < N-3.  

q ( n )  = r(t;')t; 3 < n < N - 3. 

E = -2A  COS& 
where 52 = ea. 

To find 82 we must consider the near equations: 

(3.10) 

( E - B - ' ) u ~ ( x , x + ~ ) = u I ( ~ , ~ + " + B - ' / ~ ~ ~ ( x , ~ +  1) 
( E  - ,T)aZ(x, x + 1) = az(x - 1,x + 1) + p'/2b2(x - 1, x + 1) 
( E - 2 ) b l ( n , ~ + l ) = B ' / ~ a l ( x , x + 2 ) + B - ' / ~ a ~ ( x , x + l )  

(3.11) 
+p'/zaz(x + 1, x + 2) + B-'/'az(x, x + 2) 

+ B-'/'al(x, x + I)  + B1/zal(x, x + 2). 
( E  - 2)b2(x, x + 2) = 8-"2u*(x, x + 2) + B'/%z(x + 1, x + 2) 

It follows that the amplitudes b1 ( x ,  x + 1) and bz(x, x + 2) are actually identical. This has 
to be true, since they multiply the same state. 

Using translational invariance and eliminating the amplitudes bi, the following set of 
eigenvalue equations is obtained: 
( ~ ' - ( 2 + ~ - * ) ~ + ~ - ' ) a t ( l )  = ( E -  1 ) a 1 ( 2 ) + t Z ( a t ( ~ -  l ) + @ - ' a l ( ~ - 2 ) )  
( E ' - ( ~ + B ) E + B ) ~ ~ ( N -  1) = ( E -  l)al(N -2)+e-'(al(l)+~a1(2)) 

(E-  l - ~ - ' ) a 1 ( 2 ) = ~ ( ~ - l ) a l ( l ) + a 1 ( 3 )  
(E-I -B)a l (N-2)=B- ' (E-  I)al(N- l )+a l (N-3) .  

It is easily seen that this system is incompatible with the parametrization (3.9) extended 
to 1 < R < N - 1. As we will see, this is a general feature of our model. The usual BA for 
the wavefunctions cannot be maintained for amplitudes describing neighbouring excitations. 
We therefore extend equation (3.9) to 2 < n < N - 2 only, but set 

(3.12) 

al ( i )  = r(t;')tz + F., 
a d i )  = r(t;9tlti? + E ,  (3.13) 
h(1)  = h +&, 
bz(2) = titi? + Fb 

with the constants 3; to be determined. The wavefunctions therefore develop a 'disconti- 
nuity't. 

t The quotation marks are lo remind us hat we are on a dismte lanice, 
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AI1 our equations are now satisfied, provided the following consistency condition holds 

(3.14) N - 2  Z - I 
e2 6 - 

which gives the allowed values of &. The constants Fj are then given by 

Fa, = -B  112 t 2  N &, = g F., = -p-'J=tz Fh = (3.15) 

These states in the sector r = 3 are therefore the eigenstates with eigenvalues given by 
equation (3.14). where -92 = (2nm & 4 n l / N ) / ( N  - 2). with I and m integers. Note that if 
N m  f 21 is a multiple of ( N  - 2), we get states degenerate with the state 12; e), which lies 
in the sector r = 2. The origin of the factor ( N  - 2) can he understood [5] by saying that 
a pseudoparticle can propagate past the isolated impurity, but in so doing causes a shift in 
its position by two lattice sites. 

In the sectors r > 3 we also find states which consist of one pseudoparticle with 
parameter (1 interacting with ( r  - 2) impurities with parameters &, i = 2, . , , , .$-I. We 
paramewize them as 

x IXIIOI, . . . , *i-1lo1,*il-l.*i+lIol,. . . ,X,-l[Ql) 

+ 1 I-I 

bi(xi I . . . I X r - i ) h  101. . . . I ~i-1101, Xi[@% x i i 1 ~ 1 ,  . . . , X ~ - I [ O I )  . (3.16) 

The energy of these states is parametrized as in equation (3.10) and c1 = eiel 
satisfies the phase-shift condition (3.14) with = 5 1 h . .  .$,-I. It involves only 61 and 
.& = . . .&-I,  being therefore highly degenerate. This is to be expected due to the 
irrelevance of the relative impurity distances, up to jumps of two positions via exchange 
with a pseudoparticle. 

i=l  

3.2. Sector r = 4 

This sector contains, in addition to 14; CI: 5z,&) discussed above, states which consist of 
two interacting pseudoparticles. We seek these eigenstates in the fonnt 

14; = ~ I ~ ( ~ I , X ~ ) ~ X I I - ~ . X Z I - I )  + ~ I ( X I , X Z ) ~ X I I - I ~ X Z I W I )  
XI <x* 

+bz(x l ,  XZ) IXIICQI,XZ[-I) + C(XI,XZ) IXI[CQI,XZIOOI)). (3.17) 

Translational invariance now specifies 

(3.18) 

n(n)  = ( " a ( N  - n) ~ ( n )  = VC(N - n )  
(3.19) 

wheren=xz-xl,t =tlh(cj =eie',i = 1,2)andthetotalmomentumisB1+&=2nl/N, 
with integer 1. 

b l ( n ) = e " b z ( N - n )  b z ( n ) = r b l ( N - n )  

t The functions bi(xl. xz)  are not the same zs their homonyms used for r = 3. 
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According to equation (3.17), we will parametrize energy as 

(3.20) 

Let us take the block cl = €2 = 1 first. Again, we try to build 2-pseudoparticle 
eigenstates out of translationally invariant products of one-pseudoparticle excitations at X I  

and xz with weight functions D;(xI,xz), i = 1,2: 

1 4 : e ~ , e ~ ) ~ ,  = ( D ~ ( X , . X ~ )  (~ (~ ; ' ) IX~[ - I )  + IX~IOOI)) (r(e;9iXz[-1) + IX~IOOI)) 

+ D ~ X ~ . X ~ )  (~(~;')Ix,I-I) + IX~~OOI)) ( r(t;l)~~z[-~) + I X ~ I O O I ) ) ] .  (3.21) 
XI CXP 

Comparing this with equation (3.17) and using translational invariance equations (3.18), 
we get 

(3.22) 

where D(n) = Dl(n) + Dz(n) and the periodic boundary conditions imply Dz(n) = 
Y D l ( N  -n) .  

Applying H ( q )  to the state of (3.17), we obtain a set of coupled equations for a@), 
bi(n) and c(n) .  When the two pseudoparticles are separated, we have the following fur 
equations: 

(3.23) 

We already know them to be satisfied if we parametrize Dl(n)  and Dz(n) by plane waves: 

Dlb) = t; Dz(n) = g6;. (3.24) 

The real problem arises, of course, when pseudoparticles are neighbours, so that &ey 
interact and we have no guarantee that the total energy is a sum of single pseudoparticle 
energies. 
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Action of H ( 9 )  on the state 14; 81, gives the following set of near equations: 
( E  - B - P ) a ( x . x  + 1) = a(x - I , X  + 1) + a ( x , x  + 2 )  

+ ~ - ' / ' ~ I ( x , x +  1)+,3l"bz(~ - l , x +  1) 

(3.25) 

In deriving these equations, two new states made their debut. They arise through the 
actions of the Hamiltonian on (+ + + $000 + +. . .) with coefficient c ( x ,  x + 2). We get 
thenew states (+++O + -  0 + +  ... ) and (+++$ - +  0 + +  ...). Weincorporate 
them with coefficients pTx) and 9 ( x ) ,  respectively, in our ansatz equations (3.17). They are 
eliminated, applying H ( 9 )  to them and substituting the result in the equation for C(X. x +2) .  
Using translational invariance we get 
( E - , 3  - p - ' ) a ( l )  = (1 + t - ' ) a ( 2 ) + B - ' / ' b ~ ( I ) + p 1 / ' ~ - ' b ~ ( 2 )  

( E  - 1 - p)bl(l)  = t - 'b1(2)  + p1/*[a(2) + t - 'c(2)]  + p-'/'n(l) 

( E  - 1 - /3-')b2(2) = bz(3) + p ' / ' t a ( l )  + f1''[a(2) + c(2)J (3.26) 

Here we notice two features implied by equations (3.23), (3.26). First, the wavefunctions 
again develop a 'discontinuity'. To see this, take the far equation for c(n = 2) and subtract 
from it the near equation for 4 2 ) .  to get 

(3.27) 
This requires either 4 2 )  = 0 or E = 0, both of them unacceptable in the block el = €2 = 1. 
Thus c(2)  in equations (3.26) is notthe continuation of c(n) for n > 2.  So, secondly, the 
choice of equation (3.24), which would be the usual Bethe ansatz, does nor in fact solve 
our near equations. 

Therefore, we proceed as follows [5]. Let us make a minimal modification, maintaining 
a(n) ,  bl(n) and bz(n), c(n) for 2 < n < N - 2 and 3 < n < N - 3, respectively, and 
leaving a ( l ) ,  b l ( l ) ,  b~(2 )  and c(2) as arbitrary constants. This means that we modify the 
ansatz equations (3.21) only when pseudoparticles do interact. It is convenient to set 

c(2) E / ( E  - p - @ - I )  = 0. 

a(1) = r(t;l)r(t;')w) +& 
b1(1 )  = r(t,-')a(I) + i-(ti-')D2(1) + 36, 
bz(2) = r ( t ; 9 ~ ~ ( 2 )  + r ( t r ' ) ~ ~ ( 2 )  + &, 
4 2 )  = D(2) + 3,. 

(3.28) 
i = 1.2 

All equations can now be satisfied provided the following consistency condition holds, 

(3.29) 
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and provided the constants are given by 

D(2) 
- E +2A' 

a n d 3 - -  3, = :-IFc &, = - p 2  t-13c 3 h  = - p 3  

(3.30) 

In the block cl = €2 = 1, this can  be rewritten as 

(3.31) 

This is the same consistency equation one finds for the XXZ model and it reduces to that 
of [5] in the isotropic limit p --f 1. 

= 1 .  
For E # 0, the consistency condition equation (3.29) remains identical, provided we use 
the correct energy, E = E ( E I ,  €2). Therefore, we get different Bethe ansatz equations for 
every block (€1, €2). 

It is easy to verify that this ansatz also holds for the other blocks, when not all 

For instance, in the block 61 = 1. €2 = 0, we have 

14; el, e2),, = [D~(~~,x~)(~(~;~)IX~I-I) + I ~ , I ~ I )  m 1 - 1 )  - r(t2) ixzlml)) 
XI <x* 

+ D ~ ( I ~ ,  x2)( 1 ~ ~ 1 - 1 )  - r(:z)~~l~m~))(r(t~l) 1x~1-1) + I~~KoI))}  . (3.32) 

Using translational invariance and equation (3.17), we now get 

(3.33) 

unless the pseudoparticles become neighbours. In this case there is a modification analogous 
to equation (3.28). The amplitudes are given by equation (3.33) with the same constants 
equation (3.30) added. The consistency condition equation (3.29) becomes (J-' = 1. Or, 
using periodic boundary conditions, we obtain 

t;t; = 1 t t - 2  = 1 E = 1 + r(t,)r(t;'). (3.34) 

Results for the block € 1  = 0, €2 = 1 are obtained from the block €1 = 1, €2 = 0 by the 
interchange (I cf 62. 

Only the case E = 0 falls out of line, as we may expect from (3.27). The paramehimtion 
in this case is 

(3.35) 

The only condition is tN = 1. Since either 
degenerate. 

or is a free parameter, this state is 
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4. General r 

The generalization to any r is in principle straightforward. Since the Yang-Baxter equations 
are satisfied, there is only two-pseudoparticle scattering (if we use the S-matrix language). 
Therefore near equations, where more then two pseudoparticles become neighbours, are not 
expected to give any new restrictions. The n-pseudoparticle phase shift will be a sum of 
two-pseudoparticle phase shifts @(el, 02): 

R Koberle and A Lima-Santos 

with 5 = 5152. 

In order to convince the sceptical reader, we outline the situation for this case. For 
example, for three pseudoparticles we get the following eventually problematic situations 
in which pseudoparticles meet: 

(.. .+ -- - + .. .), (. . . + -m+. . .). ___ ,  (...OooOo.. .). (4.2) 
It could be expected that the meeting of three pseudoparticles may require new modifications 
of the amplitudes a ( x l ,  x2. x3 ) ,  . . . which could eventually modify the consistency 

or (. . . + -- --f - + . . .). The equations then show that no new constants of the type 
of equation (3.30) appear in the parametrization of wavefunctions with more than two 
pseudoparticles. As a matter of fact, the near equations, with more then two pseudoparticles 
meeting, can always be rewritten so that one pseudoparticle is a spectator, leaving only two 
interacting pseudoparticles. The equations can then be shown to be satisfied, provided 
equations (3.30) are true. 

conditions. The first collision can be considered as arising either from (. . .+- --f -- t...) 

The BA equations for E # 0 and no impurities are then given by 

where E = E + 2A. Since 
with integer 1. 

and E #O. 

= eNB* = I ,  the total momentum is P = c;f20t = 2 n l / N ,  

We will now give the results for sector r with p pseudoparticles and r - 2 p  impurities 

Energy is given by 
P 

E = CE~CI + r(mr(c;') (4.4) 

and periodic boundary conditions require e N  = 1, where 5 = 5152...5~5i~~.5i,,,~ = 

The parametrization of wavefunctions in each sector is again modified when excitations 
are neighbours, by adding constants Fi. All of them can be computed in terms of the 
constants equation (3.15) for impurity-pseudoparticle meeting and equation (3.30) for 
pseudoparticle-pseudoparticle meeting, using the far equations containing near terms in 
their right-hand side. The resulting BA-eqUatiOnS are then 

I=' 

%-ppilL"p+2~ ' . L p .  

As for state equation (3.16). all the impurity dependence is lumped into .$imp implying a 
large degeneracy. 
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Again, E = 0 is different. We get a hugely degenerate state with the only condition 

The above results straightforwardly generalize for twisted boundary conditions: 
c N  = 1. 

(4.6) 

The periodic boundary condition t N  = 1 is replaced by cN = ea'@. In particular, in the 
block ei = 1, the BA equations differ from the XXZ BA equations only by the replacement 

All this is true for N = odd. For N = even a new feature arises when r = N .  
This is exactly the sector containing the ground state of the antiferromagnetic chain with 

In this case, all equations for the amplitudes a ,  b, ,  . . . continue to hold, except for the 
equation for the amplitude of the state 000.. ,000, like the one for c(x.  x + 2), N = 4 
in equations (3.26), which gets modified. There is now an extra pair of zeroes where the 
Hamiltonian is to be applied-the ones at x = 1 and x = N-and no states of the type 
p and q of equations (3.25) are created. The equation for this amplitude, call it c, now 
becomes 

ii" * SL =s; S; = e  S, . 

@ -+ @/2. 

aIlti(q) = -W). 

N 

( E  - N)c = (e-'" + [ + C 2  + . . . + cN-')P'lzbi 
+(e" + t + e' + . . . + [N- ' )B-112< 62 (4.7) 

where bl (respectively bz) stands for amplitudes arising from c by replacing a pair of zeroes 
by +- and -+, respectively, and we use twisted boundary conditions tN = e4'". This will 
affect only the @-dependent eigenvalues, The final result is that in this particular sector 
these modifications can be incorporated into a change of boundary conditions. The previous 
results (equations (4.5)) are still valid, subject only to the replacement of the boundary angle 
Q,' with 

cos@' =cos@ + ;. (4.8) 

This kind of equation has already been proposed in [ 131, where the authors show that the 
ground-state energy of the biquadratic model with angle @ equals the ground-state energy 
of the XXZ model with boundary angle Ox,,, provided 

COS(@,,,j2) = cos Q, + 4. (4.9) 

5. Free boundary conditions 

Since the Hamiltonian with free boundary conditions &(q) = E,"=;' en commutes with the 
quantum group Uqd(2) ,  we expect the Bethe states to be highest-weight states of Lrqsl(2). 
This is indeed true for all states, except for some with E = 0. As the reasoning follows 
the same line of thought as for the periodic case, we will only discuss the cases r = 2, 3 
and r = 4, which are the more interesting ones. Exactly as for the periodic case, no new 
features appear in the higher sectors and so we will not discuss them. 

5.1. The sector r = 2 

For r = 2, the eigenstates are of the form 
N N-I 
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When &(q) now acts on IS), we  obtain the eigenvalue equations 

( E  - @ - ' ) u ( l )  = a(2) + @-' / 'b ( l ) ,  
( E  - @ - @-' )a(x)  = a(~ '  + I )  + a(x - 1) + P'/'b(x - 1) + B-"'b(x) 

( 2 < x < N - 1 )  (5.2) 
( E  - @ ) Q ( N )  = a ( N  - 1) + 
( E - l ) b ( x ) = ~ - 1 ' ' ~ ( ~ ) + ~ ' ~ 2 a ( ~ + 1 )  ( I < x < N - l ) .  
We write the solution as: 

b(N - I )  

( ;Ix"; ) = ( io ) 5" + ( 2 ) 8-" 

where = eie and find from the eigenvalue equations, for the case of E # 0: 

(5.3) 

(5.4) 

where eZN = 1 ,  implying 0 = nl/N and integer 1. 
For the case E = 0, all equations reduce to 

b ( x )  = a(x)p- ' /2  - a(x + l)p'/' 1 < x < N - 1. (5.5) 
determining bo = (1 + @5)B-'", bb = -a;, bh, leaving QA and 6' undetermined, revealing 
the degeneracy of this state. 

We note that the eigenvalues given by the above equations are the same as those of the 
XXZ for the same value of the deformation parameter q [ I  I]. 

We can easily check, whether these are quantum-group highest-weight states or not. 
The action of the quantum group raising operator on the state Ix > is 

(5.6) S + l x )  =G" . . . a "  s+(x)G-" ..:-" 1x1. 

Imposing S+ 12; 0) = 0 yields the constraints 

a ( l )  +Gb(l) = O  
a(x)+Gb(X) +<-'b(x - 1) = 0 (2 < X  < N - 1) (5.7) 

For E # 0 these are satisfied, provided 4 = -p-1/2, For E = 0 they are only true for 
states, whose momentum B = n l / N  satisfies cos(ln/N) = A or 

a ( N )  + G-'b(N - I )  = 0. 

(5.8) eiln/N - 
- q  

i.e. when q is a root of unity 

5.2. The sector r = 3 

In this sector we have one pseudoparticle at, say, xz and one impurity at X I .  In contrast to 
equation (3.2), due to the lack of periodicity, the impurity now occupies only the two sites 
xI and X I  + 2, and we have the following parametrization: 
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The far equations are again 

(5.11) 

(5.12) 

= B % ( X .  x + 2) + B - ” z u l ( X ,  x + 1)  + BI~Zuz(x, x + 1) + B-I/Zaz(x, x ) .  

As usual, we modify our ansatz equation (5.11) to read 

u ~ ( x ~ ~ x ~  + 1) =U: (ut;’) +G)g  +w; (r(w + q)q2 
and similar equations for the other amplitudes involving the constants e, e, i = 1,2. 

(5.13) 

The conditions at the ends are now, depending on the position X I ,  given by 

( E  - B)UI(XI, N )  

( E  - ~ / B ) u ~ ( x I .  1) = U Z ( X I ,  2) + B-l/zbz(xI,  1) 
U l ( N  - 1, N )  = 0 

All equations are now satisfied, provided 

U I ( X I .  N - 1) + @ ” z b ~ ( ~ ~ , N  - 1) X I  < N - 1 

XI 2 2 (5.14) 
uz(0, 1) = 0. 

the last one being the BA equation for this case. Again these generate the same eigenvalues 
as the ones for the XXZ model in the sector with one pseudoparticle. 

5.3. The sector r = 4 

For this sector, we only outline the procedure. For ci = 1 ,  i = 1,2 we make the ansatz 

(5.16) 

and similar equations for bi (XI, XZ). C ( X I ,  x t ) .  The eight permutations are generated by 
making the following replacements, in this order: (FI + e;’), (e2 -+ e;’), (FI + 
6r1, 12 + e;’) and then interchanging 

-1 X I  X% u(x1, xz)  = IYI r(c;I)r(tz )el f 2  +permutations 

(2). 
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The far equations are then solved by 

(5.17) 

The equations at the ends x = 1 ,  x = N - 2, N - 1 are then satisfied, provided ai = 
i = 3 , 4 , 7 , 8 ; a 2 = - &  ZN a t , f f ~ = - e ~ N ~ ~ , a ~ = - c z  2N as. 

As in the periodic case, we have to introduce constants when pseudoparticles are 
neighbours, as in equations (3.28), in order to satisfy the near equations. Their ratios 
are as in equation (3.30), only the value of Fc is different. The only yet undetermined 
coefficient ratio turns out to be 

(5.18) 

where a = .562. All equations are then satisfied, provided the BA equations forfree boundary 
conditions hold: 

(5.19) 

where 

(5.20) 

The block E = 0, on the other hand, is again a solution with a high degeneracy. In 

(5.21) 

and analogous equations for the other amplitudes, is a solution--provided we modify it as 
usual, when pseudopmicles are neighbours-for any values of &, i = I ,  2 and Fc. 

Due to the end conditions, we have more equations to satisfy then in the periodic case. 
This has the consequence that asymmetric ansatze, like the cases cl = 1, €2 = 0, are not 
solutions for free boundary conditions and only the cases 61 = €2 remain. 

The equation (5.19) admits generalization in analogy with the case of periodic boundary 
conditions. Thus we again obtain the same spectrum as the one ofthe X X Z  model [ l l ] ,  
albeit with different multiplicitiest. 

b b&, 6) = - [ b  + - 2A - El[$;' + t;' - 2A - E ] .  
<a 

fact, the state 
a(xl ,xz)    or^:^ x, x2 +permutations 

6. Conclusion 

We have applied a modified version of the coordinate BA to the deformed biquadratic 
Hamiltonian as an interesting example of a simple spin-1 model, where the algebraic BA is 
not available, although the Yang-Baxter equations are satisfied. The Hamiltonian density is a 
projector on spin zero and satisfies the Temperley-Lteb algebra. Due to the U(1) invariance, 
there exists a reference state In), satisfying H In) = 0. Pseudoparticles are now created on 
top In) and the usual machinery is applied. This requires the introduction of 'discontinuous' 
wavefunctions, which permits us to obtain the eigenstates by a generalization of the usual 
coordinate BA. 

t This has also been noted numerically by F C Alcaraz (private communication), 
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The ground-state sector r = N of - H ( q )  for periodic boundary conditions requires an 
additional modification. If N is even, this sector contains the state fl, 10, x ) .  For periodic 
boundary conditions - H ( q )  applied to this state creates an extra contribution to the energy 
arising from the S, = 0 states at the position x = N and x = 0. This results in BA equations 
with changed boundary conditions. 

Our spin-I Hamiltonian is Hermitian only for q -k q-' z 2 and outside this region 
complex eigenvalues arise. Nevertheless, the block ci = 1, which contains the ground state 
of the complete antiferromagnetic model, constitutes by itself a perfectly unitary theory with 
real eigenvalues. Therefore, the model, which is not unitary, does nevertheless possess a 
subset of eigenvalues, belonging to a unitary one, although the corresponding states are not 
decoupled from the rest. A more detailed investigation of this point should also shed light 
on similar situations in other settings 1121. 

Our results are in agreement with the rather extensive numerical calculations performed 
by Alcaraz and Malvezzi [13], who, in particular, observed that (-H) and the spin-f XXZ 
Hamiltonian share the same ground state for N = odd. 

For free boundary conditions the spectrum is, up to multiplicites, identical to the one 
of the XXZ-model. We also verified that our BA equations for free boundary conditions 
generate highest-weight states of the quantum group Uqsl(2). For E = 0 this is not always 
true. 

There are several issues left for future work. In particular, one would like to clarify 
from an algebraic point of view the equality of the spectra of the biquadratic and the XXZ 
models for free boundary conditions and the inclusion of the XXZ spectrum in the one of the 
biquadratic Hamiltonian for periodic boundary conditions. Furthermore, the completeness 
and complete characterization as highest-weight states of the BA eigenstates, has been left 
open. 

Finally it is clear that the BA equations have to be proved only for two excitations, 
since our model is derived from a Yang-Baxter equation. The validity of BA for the higher 
sectors should follow automatically. We have no explicit proof of this statement. 
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